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An integral formulation of Takagi's equation of high-energy-electron diffraction from an imperfect 
crystal is presented. In particular, the Green function that represents diffraction from a mathematical 
point defect is investigated. In the two-beam case this function consists of two parts: (i) a singular 
part propagating down the characteristics, and (ii) a finite oscillatory part propagating between the 
characteristics. It is conjectured that this general behavior remains true in the n-beam case. 

1. Introduction 

A system of differential equations first derived by 
Takagi (1962, 1969) in a phenomenological manner 
has been shown by Lewis, Hammond & Villagrana 
(1975) to be the rigorous consequence of certain well 
defined approximations concerning the localization of 
intensity in the diffraction pattern. In the latter work 
they derived an equivalent integral equation for this 
system, and hence were able to construct a perturbation 
solution (Born series). However, this integral equation 
incorporated all of the effects of the potential into a 
single term, and as a consequence of this, the zeroth- 
order scattering amplitude for a diffracted wave was 
the amplitude at the entrance surface of the crystal. 
Because this amplitude bears little relation to the 
amplitude a few hundred gmgstroms from the entrance 
surface of the crystal, the convergence of this series 
would be very slow. This is especially true for a thick 
crystal, even if the potential is nearly perfectly periodic. 
As a result, this expansion would not be useful for a 
practical computation of diffraction unless the crystal 
was extremely thin ( 4  extinction distance). 

It is the purpose of this work to remedy this defect 
of the expansion by splitting the potential into two 
parts: (i) a perfectly periodic part which describes the 
underlying reference crystal, and (ii) the remainder 
which describes the deviation from periodicity due to 
imperfections in the crystal. One then arrives at a new 
integral equation whose zeroth-order solution will be 
the solution to the perfect-crystal equations for a 
crystal of arbitrary thickness; thus, the convergence 
of the associated Born series would be expected to be 
very fast for a nearly perfect crystal. We shall pay 
particular attention to the Green function that is used 
to construct this integral equation; and as an illustra- 
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tive example, we will construct an explicit Green func- 
tion for two-beam diffraction from a mathematical 
point defect. 

2. General considerations 

We will consider Laue diffraction from a two-dimen- 
sional crystal, where x and z are coordinates parallel 
and perpendicular to the entrance surface of the crystal. 
(This coordinate restriction does not alter the physics 
and the generalization to three dimensions is straight- 
forward.) The system of equations we are considering is 

( ) L D ( x , z ) -  I Tiz + B - ~ 

where D(x,z) is a column vector containing the am- 
plitudes dg(x,z) of the transmitted and diffracted 
waves, g is a reciprocal-lattice vector, I is the identity 
matrix, and B is a diagonal matrix containing the 
tangents of the Bragg angles 0 o of the diffracted beams. 
Hence, the operator L is a diagonal matrix of direc- 
tional derivatives along the various diffraction direc- 
tions. The matrix A(x,z) contains the scattering po- 
tential of the crystal in the following way: let V(r) be 
the potential which appears in the Schr6dinger 
equation: then we have the unique expansion V(r)= 
~gg(r) exp (ig. r), where the Fourier transform of 
g 
each To(r ) has support in the first Brillouin zone. The 
A(x,z) matrix has elements 

I (k2o- kZo)/2koz for g =  h Aoh I [hZ'go_~(x,z)]/4mko, for g ¢ h ,  (2) 

where k0 is the wavevector of the transmitted beam, 
k o - k 0 + g ,  and m is the relativistically corrected elec- 
tron mass. Equation (1) is an approximation to the 
Schr6dinger equation, derived under the assumption 
that the Fourier transforms of the components of 
D(x,z) are well localized in the first Brillouin zone. 
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When this is the case these components may be in- 
terpreted as the amplitudes of the diffracted waves; 
physically, this approximation corresponds to negli- 
gible diffuse scattering between the observed Bragg 
maxima and must be questioned in situations where 
such scattering is not negligible. 

In a perfect crystal A(x,z) becomes a constant ma- 
trix A0, since V(r) has a Fourier series. If the boundary 
conditions are that of a plane wave [i.e. D(x, z=O)= 
D(0)] independent of x, then equation (1) has the 
perfect-crystal solution Do(z) = exp (iAoz)D(O). It 
should be stressed that there is a solution, independent 
of x, to equation (1) only when A(x,z) is a constant 
and D(0) is independent of x. Otherwise, the solution 
is more complicated and not of this simple form. 

As discussed by Lewis, Hammond & Villagrana 
(1975), the retarded Green function for the operator L 
is given by 

G~h(x- x'  ; z -  z') = O(z -  z')6o~, 

x d [ ( x - x ' ) - ( z - z ' )  tan Og] (3) 

where O(z-z') is the unit step function, don is the Kro- 
necker delta function, and 6[ . . . ]  is the Dirac delta 
function. This Green function, although of very simple 
structure due to the simplicity of L, reveals two im- 
portant facts about hyperbolic operators such as L: 
(i) there exists a region of determinancy for the solution 
of equation (1) at a point P bounded by the charac- 
teristics with the greatest and least slopes passing 
through P, and (ii) hyperbolic operators tend to 
propagate singularities down their characteristics. 

Now, in order to transform equation (1) into an 
integral equation of the form described in the intro- 
duction, it is only necessary to calculate a new (and 
more informative) Green function defined by the re- 
tarded solution to 

( L - i A o ) A ( x - x '  ; z - z ' ) = d ( x - x ' ) d ( z - z ' ) I .  (4) 

Not  only does this Green function enable us to apply 
perturbation theory to the solutions to the perfect 
crystal equations, but it also solves the problem of 
scattering by a crystal when the incident wave is not 
a plane wave but an arbitrary wave. 

If the incident wave is a plane wave, we have the 
integral equation 

z-z  D(x, z)= Do(z) + ( x -  x , 
,,0 

× OA(x', z')D(x', z')dx'dz' (5) 

where we have written A(x,z)=Ao+dA(x,z). It is 
obvious that equation (5) is equivalent to equation (1) 
and now we have Do(z) as the zeroth-order solution. 
The Born series to this equation is obtained in the 
usual way by iterating the integral, beginning with 
Do(z). 

If the incident wave is not a plane wave, but rather a 
more general wave, so that D(x,z=O) has explicit 

dependence on the x coordinate, we have the integral 
equation 

I~_~o A ( x -  " z)D(x',z=O)dx' D(x,z)=- x , 

+ A ( x -  x' ; z -  z')dA(x',z')D(x',z')dx'dz'. (6) 
0 - - o o  

Hence, even if the crystal is perfect, so that dA = O, we 
still have an integration to perform in the first term of 
equation (6); but we do not have an integral equation. 

In summary, A describes scattering from a mathe- 
matical point defect in an otherwise perfect lattice, 
while G t describes scattering from a point in an other- 
wise empty [V(r)= 0] lattice. 

3. The calculation of A 

The non-trivial nature of A, in contrast to G t, is a 
result of the fact that the matrix operator L and the 
matrix A0 do not commute as matrix operators in the 
n-component vector space of the diffracted wave am- 
plitudes. As a consequence of this, A is neither a 
diagonal matrix, nor does it vanish within the triangle 
of determinancy, as does G I. Actually to calculate A, 
in coordinate space, for the general n-beam case 
would be extremely complicated. However, the cal- 
culation is quite straightforward in the case of only 
two beams (a transmitted beam and a single diffracted 
beam). For completeness, we present the calculation 
in the Appendix and we will discuss the results of that 
calculation later in this section. 

For many purposes one does not need any more 
than the convenient integral expression 

A ( x -  x "  z -  z') - O(z -  z') 
' 2zc 

x l °° exp [ik(x- x ' ) - i ( k B -  Ao) (z-z ' )]dk ,  (7) 
d o  

which is easily verified to be a solution to equation (4), 
and the step function reveals that we indeed have the 
retarded solution. The hyperbolic nature of L still 
requires, as in the case of G ~, that A vanish outside the 
triangle of determinancy. This is also easily verified 
through equation (7) by noting that the integrand is an 
entire (matrix) function of k. Now, by looking at the 
large [kl behavior of the exponential we may effectively 
ignore the matrix A0 (and its associated commutation 
problems); then we note that when we are outside the 
triangle of determinancy one of the following ine- 
qualities holds: 

( x - x ' )  
> t a n  0o(max)  (8a) 

( z - z ' )  

( x - x ' )  
( z -  z'--------) < tan 09(min), (8b) 

where 0o~max ) and 0o(mln ~ refer to the characteristics 

A C 31A - 2* 
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with the greatest and least slopes passing through the 
point (x', z'). Since at least one of these inequalities 
holds, we can complete a contour in either the upper 
half or the lower half of the k plane without affecting 
the value of the integral, and so obtain zero due to 
the analyticity of the integrand. Of course, when we 
are inside the triangle of determinancy no such choice 
of contours is possible without changing the value of 
the integral. 

One would also like to verify the unitary nature of 
A as an integral kernel. To be specific, suppose we 
have a perfect crystal and an arbitrary incident wave, 
normalized so that 

[ID(x,z=O)[l z -  I ~ D+(x,z=O)D(x,z=O)dx=l ; (9) 
d--  oo 

then d has an action on this Hilbert space of n-com- 
ponent square integrable functions given by equation 
(6) when dA=O. We then verify that this action is 
unitary by computing liD(x, z)[I 2, using the integral ex- 
pression of equation (7), and obtaining one because 

I ~ A + ( x - s ; z ) A ( x - s ' ; z ) d x = d ( s - s ' ) I ,  (10) 
t)--  oo 

which is merely another statement of the unitarity. 
Once we have verified unitarity, we expect that there 
is a formal expression for the integral operator as the 
exponential of a skew-Hermitian operator and, in 
fact, we have the result 

D(x' z)= l ~- oo A ( x - x '  ; z)D(x',z=O)dx' 

--exp +.o)z]   11) 

By differentiating D(x,z) and the far right-hand side 
of equation (11) we recover the perfect-crystal equa- 
tions. Thus, the skew-Hermitian generator associated 
with A is clearly (-BO/Ox+iAo) because A0 is a Her- 
mitian matrix, B is Hermitian, and -iO/Ox is the Her- 
mitian generator of translations. We can see how the 
integral operator A, written in the exponential form 
above, generates a one-parameter unitary group of 
transformations on the incident wave. That is to say, 
if we write D(x, z) = U(z)D(x, z = 0); then U(zt + z2) = 
U(zOU%) . 

The results of the two-beam calculation are easily 
summarized: A consists of two parts, a singular part 
much resembling G ~ and a finite part containing Bessel 
functions J0 and Jr. Specifically, we have written the 
two matrices involved in (L- iAo)  in a very general 
way: 

(Bt O) and Ao [AtA3] 
B= B2 = ~A3Az] " 

Of course, At=0 ,  but it is instructive for the n-beam 
case to leave it as At. As might be expected, the entire 
non-trivial coordinate dependence of A appears 
through the two functions lui = ( x -  x') - B l ( z -  z') and 

P2 = ( x -  x') - B2(z-  z'). Of course, we need the cha- 
racteristic function for the triangle of determinancy 
which has a vertex at the source point (x', z') in the 
crystal. We will write this function as Cn(x',z'; x,z), 
and it will be defined as equal to one when (x,z) is 
inside the triangle and zero otherwise. (We will often 
just drop the coordinates and write Cn.) Finally, we 
have the result of the Appendix: 

A ( x -  x' ; z -  z')= A(~*n~')(x- x' ; z -  z') 
-]- A ( f i n i t e ) ( x  - X ' ;  Z - z ' ) ,  

where 
(12) 

A (sing') = O(z-- Z') 

x (f[H1] exp [iAt(z-z')] 0 ) 
0 6[ P2] exp [iAz(z-- z')] 

z~(fini te)  = O ( Z - - z ' ) C A  exp (i~o) 
-g2 

( ( A t -  A2)Jo(¢) - iA3 (---~ll ?-) l/Z j l (~  

A3J0(~) (Az-At)Jo(~)- iA3 (---~21 ) 

A3lo(¢)~ 

1/2 / 

Jr(C)/ 

Q - B i - B z = t a n  00- tan  0 o, ~o=(A~lu2--A21q)/g2, and 
4--2A3(-P~H2)I/2/Q. One should notice that when 
Ao =0  we recover G ~, and when only A3 =0  we are left 
with a diagonal Green function, since then L and Ao 
would both be diagonal. Also notable is the fact that 
on the characteristics either /~x=0 or pc=0,  and 
A (fl"~te) remains bounded there, even though we have 
factors like (/~2/H01/2, due to the small argument 
behavior of Jt(~). 

In the symmetrical Laue case, when we are at the 
exact Bragg condition (i.e. AI=A2=0,  B I = - B 2 )  we 
have the simpler expression 

O(z- z')CnA3 ( -  izJl(r/) J0(r/) 

Jo( ) o3) 

where 

= A3(z-  z')[1 - (tan 0/tan 00)2] 1/2 , 

tan 0 = ( x -  x ' ) / ( z -  z') 
and 

z = [(tan 0 o -  tan 0)/(tan 0 o + tan 0)] 1/z . 

The finite part of the Green matrix, in the symmetrical 
Laue case, has also been derived in the work of Ku- 
riyama & Early (1974). These authors point out that 
the Bessel functions arose in a calculation by Kato 
(1968) of X-ray diffraction in a perfect crystal with an 
incident spherical wave. We see that the argument r/ 
is an even function of tan 0, so that the Bessel func- 
tions contribute a function that is symmetrical between 
the characteristics. The function z, however, is not 
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symmetric. For schematic purposes we will distinguish 
three thicknesses of crystal" (i) A3(z-z')<~ 1 (thickness 
<~ extinction distance), (ii) A3(z-z ' )>l  (thickness 
> extinction distance), and (iii) A3(z-z')>~ 1 (thickness 

extinction distance). In Fig. 1 we have sketched 
the Bessel functions vs. x, at constant ( z -z ' ) ,  for the 
three thicknesses listed above. The zeros in Fig. 1 
occur when 

tan 0=[1- ( ro ,  x/V)2] m tan 09 

where v=A3(z-z ' )  and either Jo(ro) or Jl(rl) equals 
zero. Consequently, when v is small there are no roots 
in the allowable range, and when v is large there are 
many. From an observational point of view, the best 
electron-microscope contrast is obtained in case (ii), 
since the amplitudes remain large there and absorption 
effects are much reduced from case (iii). 

Clearly one would like to know what features of the 
two-beam case remain in the general n-beam case. 
For example, is it generally true that ,4 may be broken 
up into a singular and finite part, where the singular 
part resembles GX? Apparently the answer to this 
question is yes, as may be seen by the following ar- 
gument" Let us write Ao=A<o d)+Aco °'d') where (d) and 
(o.d.) refer to the diagonal and off-diagonal parts of 
Ao. Then we write `4=`4(sing.)+`4(r~,,e), where we 
define 

( L - -  iACod))`4(stng')(X - X'  ; Z - -  Z') 

= 6(x-- x ')6(z-  z')I. (14) 

A solution to this equation is clearly `4(~ng.)= 
exp [iA~od)(z-z')]G< Substitution into equation (4) im- 
plies that 

' " Z-- Z') ( f_,-- iAo)`4(tt"lte)(x - x , 
=iA<o°'d')`4(sing')(X--X' ; Z--Z') . (15) 

Since the source term is now only a first-order delta 
function, it is quite reasonable to expect that `4(fi,i,o) is 
indeed finite, although this is not a rigorous conclusion. 

X ' ~ "  

I 

0 

I 

Fig. 1. Sketch of the Bessel functions J0(r/) and Jl(r/) plotted vs. 
x, at constant (z-z') for thickness cases (i), (ii), and (iii). We 
have rescaled the distance between the characteristics in 
order to make them all the same. 

4. Conclusions 

In this paper we have presented an integral formulation 
of Takagi's (1962, 1969) equation of high-energy- 
electron diffraction from an imperfect crystal. We have 
also investigated the Green function that represents 
scattering from a mathematical point defect in an 
otherwise perfect crystal, and we have shown that in 
the two-beam case this function consists of two terms: 
(i) a propagation of the singularity of the defect down 
the characteristics and (ii) a finite residual term con- 
sisting of oscillatory Bessel functions inside the tri- 
angle of determinancy. 

We are currently studying the possibility of using 
the oscillatory part of the Green function to identify 
real point defects by high-resolution electron micros- 
copy. In particular, we are investigating the validity 
of describing a point defect as a point scatterer, since 
the atoms near a point defect are displaced from their 
positions in a perfect crystal. 

APPENDIX 

Here we present the derivation of the two-beam 
Green function under arbitrary diffracting conditions. 
We shall write `4 in matrix form as 

d = \`44`42! " 

Then, expanding the matrices in equation (4) we 
obtain the following four differential equations for the 
components of A : 

c9 ~ _iAO `41_iA3A4=6(x_x,)6(z_z,) + 

(A1) 

- iA 0 3 3 -  iA332 = 0 (A2) 

0 
- iA2) A4 - iA3A1 = 0 (A3) ( ~  +B2 ~x 

(~z  +B2 ~x-O -iA2) 3 2 -  iA3`43=6(x- x ')6(z-  z ') 
(A4) 

Making use of this system, we can derive an equation 
for A4 alone 

-iA1) ( ~ + B2 ~ -iA2) -iA3] `44 

= 6 ( x - x ' ) 6 ( z - z ' ) .  (A5) 

Similarly we can derive an identical equation for A3; 
hence A3=A4 apart from homogeneous solutions, 
which we discard. Also, once we know A4, equation 
(A2) and equation (A3) give us the remaining compo- 
nents of d. 
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We can solve equation (A5) with a Laplace trans- 
form in z and a Fourier transform in x, yielding the 
solution 

iAa 
A , ( x -  x' ; z -  z') - 4n 2 

f~  it+'°° e x p [ i k ( x - x ' ) + s ( z - z ' ) ]  × 
oo ,Jc-~oo (s + ikB~-iAx) (s + ikB2-iA2)+ A~ dsdk 

(A6) 

where c is to the right of all poles in the complex s 
plane. It is convenient to rotate this plane by letting 
s=iy  (see Fig. 2) and we obtain 

A4(X--X" Z--Z')-- A3 
' 4n:2i 

X I~_oo l -`*+°° e x p t i k ( x - x ' ) + i y ( z - z ' ) ]  dydk (A7) 
.,-i~-oo [ y -  yx(k)] [ y -  y2(k)] 

where YL 2 are roots of  the quadratic equation 

y2 + y[(kSx - A,) + (kB2- A2)] 

+[(kB~-AI)  ( kB2-A2) -A] ]=O , (A8) 

so that 

(see Fig. 4), so that the integrand falls to zero ex- 
ponentially along these contours; hence the integral 
is zero, since the contours enclose a region of ana- 
lyticity. When we are in region III, the integrand does 
not fall off exponentially as we move off to infinity 
in either the upper-half or the lower-half plane, so 
that no such choice of contours is possible. 

In order to render equation (A9) into a more re- 
cognizable form, let us write 

d(k) = (Bx - B2)2[(k - ko,R) 2 + ko 2. ,] 

( 
( - ic  

Ira(y) 

v ~ Re (y) 

y~ (k )= ( -½) [ k (B~  + B 2 ) -  (A~ + Az)] + (½)[d(k)] '/2, 

y2(k)=(-½)[k(B~ + Bz)-(A~ + A2) ] - (½) [d(k) ]  '/2, 

and 

a(k) = [k(B, - B2) - (A1 - A2)] z + 4A] .  

The discriminant, d(k), being the sum of two squares 
(of real quantities), is always positive; hence yl, and Y2 
are real and non-degenerate. If ( z - z ' ) >  0 we complete 
the y-plane contour to the upper half-plane, thereby 
collecting the residues of the poles on the real axis. If  
( z -  z') < 0 we obtain zero; hence 

z l , ( x - x ' ;  z - z ' ) =  O(z-z ' )  A3 
zti 

x exp [i(Ax + A2) ( z -  z')/2] 

~-(°°oo sin {(z-z')[d(k)]l/2/2} × 
[d(k)] 1/2 

x exp { i k [ ( x - x ' ) - ( B ~  +B2)(z-z ' ) /2]}dk.  (A9) 

We now make use of the fact that BI = tan 00 and 
B2=tan  0g to distinguish three regions in coordinate 
space (see Fig. 3). With the conventions of  this co- 
ordinate system BI < 0 and B2 > 0, so that:  (i) in region 
1 7 - B~ < 0 and 7 -  B2 < 0, (ii) in region II 7 -  B1 > 0 and 
7 -  B2 > 0, and (iii) in region III 7 - Bx > 0 and 7 -  B2 < 0 
where 7 = - ( x - x ' ) / ( z - z ' ) .  Note that the integrand of 
equation (A9) is an analytic function everywhere in 
the complex k plane. When we are outside the triangle 
of  determinancy, in regions I, or II, the above ine- 
qualities enable us to select either contour F~ or Fu 

Fig. 2. The complex y plane used for the inversion of the  
Laplace transform. The poles y~(k) and y2(k) are always on 
the real axis. This transform is easily inverted even in the 
general n-beam case. 

°Lz 
Incident 
electron beam 

Crystal (x 'z ' )  

Fig. 3. The coordinate space used for the inversion of the 
Fourier transform. 

( 
( 

Ira(k) 

) Re ) 

r, 

Fig. 4. The complex k plane used for the inversion of the Fou- 
rier transform. There are no poles or branch cuts in the k 
plane and contours F~ and F .  may be selected when in 
region I or region II in coordinate space. 
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where k0, R and k0, x are the real and imaginary parts 
of the roots of the equation d(k)= 0. Then we translate 
the integral, letting k' = k - k o ,  R. This gives us 

O ( Z - - Z t ) A z C  A t ,  

A 4 ( X - -  X , Z - -  Z ' )  = - -  ~ z ( B 1  - B2) 

x exp {i[(Al + A2)(z-z ') /2 +c~k0, R]} 

f~ sin [fl(k 2 ± z.2 wzl s ~0 ,  I] J 
x (k2 +k2 1 ) l / ~ e x p ( i c & ) d k  (A10) 

- - C O  

where e = ( x - x ' ) - ( B 1 - B 2 ) ( z - z ' ) / 2  and f l=[ (B2-  
B~) (z-z ' ) /2]>O. Next, we make two more obvious 
transformations; first let k=ko, x sinh t and write out 
the sine in terms of exponentials. Then, let c~ sinh t + 
fl cosh t = _+ (j~2__ (X2)1]2 cosh 0 where fl > 0 and fl > 
and the + ( - )  goes with the first (second) exponential. 
These transformations result in the integral in equation 
(A10) becoming 

l f_~ --t~2) 1/2 ~- ~s in  [[ko, l l ( f l  2 cosh 0]d0 

= J0[l~0, ,1(/~ 2 - ~2),/2]. 

We note that kO, R=(AI-A2)/12 and k0,1= +2A3/12 
where fl2-ct2= - ( f l + c 0  (c~-fl)= - /qP2 ;  therefore we 
can write equation (A10) as 

A 4 ( x - x '  ; z - z ' ) =  - O(z-z')CaAa exp(i~o)Jo(~). (Al l )  
12 

To compute the diagonal elements of A, we need the 
relations: 

727 

and 

~-~ + ~ ~ -  ~ ' = -  ? z  + 82 ~ -  ~ = 12. 

Then using these relationships we obtain 

A~(x-  x' ; z -  z') = O(z-  z'){d[pd exp [iA~(z- Zt)]  

(A13) 
and 

A 2 ( x - x '  ; z - z ' )=O(z - z ' ) l d [p2]  exp [iA(z-z')] 

exp  ( 
(A14) 

where the Dirac delta functions are a result of having 
to differentiate the characteristic functions, while J1 
is a result of having to differentiate J0. 
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The first-order term of the joint probability distribution of Ehl +k, • •., Ehr,,+k, for h i , . . . ,  hm fixed and k 
variable, is derived for both space groups P]" and P 1. It appears that the first-order term affects the 
most probable values for the moduli of the structure factors, but that it has no influence on the most 
probable values for the phases. 

Introduction 

The main term of the joint probability distribution of 
an arbitrary number of structure factors has been 
obtained from the central-limit theorem (Tsoucaris, 
1970). From this distribution, formulae for the most 

probable values of structure factors have been derived 
(Tsoucaris, 1970; d e  Rango, Tsoucaris & Zelwer, 
1974). The present paper deals with the first-order 
term of this distribution. To calculate this term use is 
made of Hauptman's  (1971) method for the derivation 
of the joint probability distributions of two and three 


